Search


AI Chip Design Challenges at the Edge ...

  • Share this:


AI Chip Design Challenges at the Edge – from Deep Learning Model to Hardware

AI國際鏈結辦公室於11/22(四)舉辦一場AI專題演講!
演講詳細資訊如下,歡迎大家踴躍參加!

#題目: AI Chip Design Challenges at the Edge – from Deep Learning Model to Hardware.
#講者: Bike Xie, Director of engineering, Kneron Inc
#時間: 2018/11/22(四)10:00-11:20AM
#地點: 國立清華大學 台達館106室

#報名及詳細資訊: https://reurl.cc/yEv58

#演講摘要: Since the remarkable success of AlexNet on the 2012 ImageNet competition, deep learning models and especially CNN models have become the architecture of the choice for many computer vision tasks. However, inference of a CNN model can be highly computational expensive, especially for the end-user devices, such as the internet of thing (IoT) devices, which have a very limited computing capability with low-precision arithmetic operators. A typical CNN model might require billions of multiply-accumulate operations (MACs), load millions of weights, and draw several watts power for a single inference. Limited computing resources and storage become the major obstacle to run computation-hungry CNN on IoT devices.

Many design techniques in the area of model structure, compiler, and hardware architecture are making it possible to deploy CNN models on edge devices. This report discusses the design challenges for AI chip at the edge and briefly introduces these design techniques. A well-designed small size model might only require much less storage and computation resource. Therefore, model compression techniques including pruning, quantization, model distillation become substantial to deploy CNN models on edge devices. Compiling CNN models to hardware instructions is another critical step. operation fusion, partition, and ordering might significantly improve the memory efficiency and model inference speed. Finally, hardware architecture for AI chip is currently one of the hottest topics in circuit design. Dedicated AI accelerators provide an opportunity to optimize the data movement in order to minimize memory access and maximize MAC efficiency.

主辦:國立清華大學AI創新研究中心專案-國際鏈結計畫
聯絡資訊:
田小姐 03-5715131 分機34908
黃小姐 03-5715131 分機34905


Tags:

About author
國立交通大學於2021年2月1日與國立陽明大學合校為國立陽明交通大學。國立交通大學源自西元1896年創立之南洋公學,百餘年來以培養我國應用科學人才著稱。民國46年10月24日,行政院同意教育、國防、經濟、交通四部會所呈意見,准由教育部籌備國立交通大學復校事宜;民國47年6月1日,國立交通大學電子研究所在新竹市博愛街正式成立,期許能培育電子科學的菁英並奠定國內電子資訊產業發展的基石。為進一步配合工業發展之需,擴充科技人力之基礎,於民國53年成立電子工程學系,開始招收大學部學生。 本系多年來在全體同仁共同努力及系友們的支持下已深具規模,不僅師資、課程及設備在國內首屈一指,也與世界著名大學並駕齊驅。目前本系陣容堅實壯盛,計有助理教授以上專任教師五十餘位;學生方面,則有學士生四百餘人,碩士生四百餘人,博士生三百餘人;故為國內舉足輕重之龍頭大系。系所畢業系友已近六千人,分別在國內外學術界、研究機構、工業界及企業界服務,多數傑出系友並已成為台灣電子資訊產業之領袖人物,是科技發展及國家建設的中流砥柱。
陽明交大電子系期許未來在各項電子科技領域持續引領風騷,並以創新、綠色的電子科技不斷增進人類生活品質。邀請您共同見證我們寫下我國電子資訊的新頁。
View all posts